Abkürzungen

...sind eine Vereinbarung, man kann sie nicht "verstehen"

$$x \cdot y = xy$$
 oder $a \cdot b = ab$

$$x \cdot x = x^2$$
 oder $b \cdot b \cdot b = b^3$

Rechengesetze (Rechenregeln)

Man kann entweder verlangen, dass sie gelten sollen...

... oder verstehen, dass sie in einer konkreten Anschauungssituation vorhanden sind (z.B. beim Rechen mit natürlichen Zahlen)

$$x \cdot y = y \cdot x$$

$$a \cdot b \cdot c = a \cdot c \cdot b$$

$$b \cdot a \cdot c = b \cdot c \cdot a$$

$$c \cdot a \cdot b = c \cdot b \cdot a$$

$$3 \cdot 5 = 5 \cdot 3$$

$$2 \cdot 5 \cdot 8 = 2 \cdot 8 \cdot 5$$

$$5 \cdot 2 \cdot 8 = 5 \cdot 8 \cdot 2$$

$$8 \cdot 2 \cdot 5 = 8 \cdot 5 \cdot 2$$

Dies ist das Kommutativgesetz

Rechengesetze (Rechenregeln)

$$u \cdot (v + w) = u \cdot v + u \cdot w$$

$$3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

Warum?

$$3 \cdot 6 = 3 \cdot 4 + 3 \cdot 2$$

Dies ist das Assoziativgesetz

Klammer vor Punkt vor Strich

Diese Merkregel ergibt sich für das Rechnen mit Zahlen, damit die oben genannten Gesetze gelten können

$$5 \cdot (3+4) = 5 \cdot 7 = 35$$

$$5 \cdot (3 + 4) = 5 \cdot 3 + 5 \cdot 4 =$$

 $15 + 20 = 35$

$$5 \cdot (3+4) \neq 5 \cdot 3 + 4 = 19$$

Abkürzungen

...sind eine Vereinbarung, man kann sie nicht "verstehen"

$$x \cdot y = xy$$
 oder $a \cdot b = ab$

$$\mathbf{x} \cdot \mathbf{x} = x^2$$
 oder $\mathbf{b} \cdot \mathbf{b} \cdot \mathbf{b} = \mathbf{b}^3$

Rechengesetze (Rechenregeln)

$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$
 $3 \cdot (4 + 2) = 3 \cdot 4 + 3 \cdot 2$ Warum? $3 \cdot 6 = 3 \cdot 4 + 3 \cdot 2$

Dies ist das Assoziativgesetz

Rechengesetze (Rechenregeln)

Man kann entweder verlangen, dass sie gelten sollen...

... oder verstehen, dass sie in einer konkreten Anschauungssituation vorhanden sind (z.B. beim Rechen mit natürlichen Zahlen)

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$$
 $3 \cdot 5 = 5 \cdot 3$
 $\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c} = \mathbf{a} \cdot \mathbf{c} \cdot \mathbf{b} =$ $2 \cdot 5 \cdot 8 = 2 \cdot 8 \cdot 5 =$ $5 \cdot 2 \cdot 8 = 5 \cdot 8 \cdot 2 =$ $5 \cdot 2 \cdot 8 = 5 \cdot 8 \cdot 2 =$

Dies ist das Kommutativgesetz

Klammer vor Punkt vor Strich

 $8 \cdot 2 \cdot 5 = 8 \cdot 5 \cdot 2$

Diese Merkregel ergibt sich für das Rechnen mit Zahlen, damit die oben genannten Gesetze gelten können

$$5 \cdot (3+4) = 5 \cdot 7 = 35$$
 $5 \cdot (3+4) = 5 \cdot 3 + 5 \cdot 4 = 15 + 20 = 35$

$$5 \cdot (3+4) \neq 5 \cdot 3 + 4 = 19$$

 $c \cdot a \cdot b = c \cdot b \cdot a$